‘ v APPROVED FOR
| o PUBLIC DISTRIBUTION
' ST

MASSACHUSETTS INTITUTE OF TECHNOLOGY Bq-_l-c VLSI PUBLICATIONS

ELECTE %
VLSI Memo No. 89-570 JAN 17 1990 §

October 1989
D™

A Unified Approach to the Synthesfé of Fully Testable Sequential Machines

Srinivas Devadas and Kurt Keutzer

s

Abstract

In this paper we attempt to unify and extend the various approaches to synthesizing fully
testable sequential circuits that can be modeled as finite state machines (FSMs). We first
identify classes of redundancies and isolate equivalent-state redundancies as those most
difficult to eliminate. We then show that the essential problem behind equivalent-state
redundancies is the creation of valid/invalid state pairs. We devote the remainder of the
paper to techniques for developing differentiating sequences for valid/invalid state pairs
created by a fault, as well as to techniques for retaining these sequences in the presence of
that fault.

AD-A217 120

A variety of techniques have been proposed to address this problem. At one end of the
spectrum there are optimal synthesis procedures that ensure full testability by eliminating
redundancies via the use of appropriate don’t care sets. At the other end of the spectrum
there are constrained synthesis procedures that produce fully and easily testable sequential
circuits by restricting the implementation of the logic. The optimal synthesis procedures
require fewer constraints on the logic but increase the expense of logic optimization to the
point that CPU time requirements may be unacceptable. The constrained synthesis
procedures require relatively simple logic optimization procedures but constrain the logic
to the point that the area penalty may be unacceptable. -

-

In this paper we use the notion of fault-effect disjointness to explore the landscape between
these two boundaries and demonstrate a spectrum of methods that place relatively more-
or-less emphasis on either logic optimization or constrained synthesis. Techniques used in
this exploration include fault simulation, Boolean covering, algebraic factorization and
state assignment.

We present experimental results using the new synthesis procedures as well as

. comparisons to previous approaches. 9 O O 1 1 6 e

Microsystems Massachusetts Cambridge Room 39-321
Technology Institvte Massachusetts Telephone
Laboratories of Technology 02139 (617) 253-0292

Acceswoi For

S A e e

NTIS CRA%I

DTIC 1A8B (1
Ungonoe: 2. d 2
Justihizate -
e T
8y .)
Distiihy it f T
Avrichnt Codes |

‘ : Ca s o
N R R TV ¢
K-;-w, \ Drst Sl

Acknowledgements

This research was supported in part by the Defense Advanced Research Projects Agency
under contract N00014-87-K-0825.

Author Information

Devadas: Department of Electrical Engineering and Computer Science, Room 36-848,
MIT, Cambridge, MA 02139. (617) 253-0454.

Keutzer: AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, (201)
522-6332.

Copyright© 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form “private
communication.” For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Technology Laboratories,
Room 39-321, MIT, Cambridge, MA 02139; (617) 253-0292.

A Unified Approach to the Synthesis of Fullyv Testable Sequential Machines

Srinivas Devadas
Departmnent of Electrical Engineering and Computer Science
Massachusetts Institute of Technology. Cambridge

Rurt Keutzer
AT&T Bell Laboratories. Murrayv Hill. New Jersey

Abstract

In this paper. we attempt to unifv and extend the various ap-
proaches to svuthesiziug fully testable sequential circuits that can
be modeled as finite state wachines (FSMs). We first identifv
classes of redundancies and isolate eguivalent-state redundancies
as those most difficult to eliminate. We then show that the es-
sential problem belind equivalent-state redundaucies is the cre-
ation of valid/invalid state pairs. e devote the remainder of
the paper to techniques for developing differentiating sequences
for valid /invalid state pairs created by a fault. as well as to tech-
uiques for retaining these sequences in the presence that fault.

A variety of techuiques have been proposed to address this prob-
lewi. At oue end of the spectrum there are optimal synthesis pro-
cedures that ensure full testabilitv by eliminating redundancies
via the use of appropriate don't care sets. At the other eud of
the spectruw there are constrained svuthesis procedures that pro-
duce fullv and easilv testable sequential circuits by restricting the
implementation of the logic. The optimal synthesis procedures
require fewer constiamts on the logic hut increase the expense of
logic optimization to the poiut that CPU tile requirements may
be unacceptable. The coustrained syvuthesis procedures require
relatively simple logic optimization procedures but constrain the
logic to the point that the area penalty way be unacceptable.

In thic paper we use the notion of fault-effect disjotntness to
explore the Jandscape between these two honndaries and demon-
strate a spectrmu of wmethods thar place relatively more-or1-less
emplasis on either logic optimization o1 constrained svnthesis.
Technigues used in thic explotation include include fault simula-
‘:1.. Booleau covering. algebraic factorization aud state assigu-
uent.

We present experimental results using the new svnthesis proce-
dnres as well as comparisous to previous approacles.

1 Introduction

Can a sequential circuit be completely 1ested without adding scan logic?
Tine ic pethaps the most open problens in the area of testing. One nat-
ural approaclh to solving this probleni i< to improve current sequential
test generation algorithms. The primary drawback to this approach
i« that circuit sizes are increasing <o quickly that even significant im-
provements in gequential test generation algorithns caunot keep up. A
radically different approach is synthesic for sequential testability. In
this approach it is the structure of the circuit itself that is modified to
produce fully testable designs.

The idea that logic synthesis and optimization can have a very pro-
found eflect on the testability of a synthesized combinational or sequen-
tial circuit has heen recognized [6]. The relationship between testa-
bility and Boolean minimization for two-level combinational circuits
dates back to the Quine-McCluskey algorithm [10}. Notions of prime
implicants and irredundant covers are basic to all two-level Boolean
mininization procedures and these imply immunity to stuck-at fault
redundancies in two-level combinational circuits. Initial work in the
aren of multi-tevel logic synthesis and testability involved the use of im-
plication procedures to eliminate redundancies in combinational logic
circuits [QY’The relationships between redundancies and don’t cares in
combinational circuits was more thoroughly investigated in P], where
the notions of primality and irredundancy were generalized for multi-
ievel circuits. Recent work in synthesis for testability bas been able to
ensure compleie multiple fault testability for multi-level combinational
logic circuits [9).

Relationships between sequential logic syvutliesis and non-scan sequen-
tial circuit testability are equally intimate. Scan logic appears to be

less necessary for ensuring the lestability of datapath portions< of cii-
cuils because datapath portions have less feedback ‘] 1} {5] As & result.
the remsining challenges in synthesizing sequentially testable circuitec
are to synthesize fully /easily testable control portions and 1o combine
these with datapath portions. Control portions are most conunonls
implemented as finite state machines (FSMs).

In this paper. we attempt to unify and extend the various approache<
to evnthesizing fully testable sequential circuits that can be modeled ac
finite state machines (FSAs). We first identify classes of redundanciec
and isolate equivalent-statc redundancics as those most difficult 1o elun-
inate. We then show that the essential problem behind equivalent-state
redundancies is the creation of valid/invalid state pairs. e devote (1
remainder of the paper to technigues for developing differentiating < -
quences for valid/invaud state pairs created by a fault. as well as 10
techniques for retaining these sequetices iti the presence that fault.

A variety of techniques have heen proposed to address tlis problem.
At one end of the spectrum there are optimal synthesis procedures that
ensure full testability by eliminating redundancies via the use of ap.
propriate don’t care sets. At the other end of the gpectium there ar
constrained synthesis procedures that produce fully and easily testalis
sequential circuits by restricting the implementation of the logic I e
optimal syntliesis procedures require lewer constramts on the logic b
iucrease the expense of Jogic optimization to the pont that CPU t1hw 1e-
quirements may be unacceptable. The conustrained svithesic procedie
require relatively simple logic optimization procedures hut constyam 1l
logic to the point that the area penalty may be unacceptabie.

In this paper we use the notion of faullceflect disprintnesc to explons
the landscape between these two houndaries and demonctraie a <pec.
trum of methods that place relatively more-or-less emiphasic o eing
logic optimization o1 constrained synthesis. Techmigques ueed i tie oy
ploration include include fanlt simulation. Boolean covening. algebian
factorization and state assignnent.

Finalfy. we present experitental and analy tical compancons e tweer:
various testability-driven synthesic procedures that provide insights as
to the relative merits of the different procedures.

Basic definitions and terminology are given in Section 2. 1n Section
3. we review the 1ypes of sequential redundancies in FSMS. 1o Section
1 we describe general methods for removing <oine classes of redundan.
cies and review theorems regarding wnconditional testabilits of favhe
in sequential circuts. In Section 5. we present the notion of chfferent-
ating sequences and describe a generic synthe<ic procedure that reculis
in fully testable sequential machines. We then present a wimbcation
of synrthesis-for-testability approaches under the umbrella of a concept
strongly related to differentiating sequences. fauli-effect dicjointiess
and show that previous synthesis approaches can be viewed as spe.
cial cases of the generic symthesis procedure. In addition. we describe
new Boolean covering and aigebraic factorization techniques that repie-
sen! interinediate solutions to the problem of sxnthesizing fully testable
sequential machines. Preliminary experimental results using the new
svirthesis procedure proposed here as well as cemparisons (o previons
techniques are given in Section 6.

2 Preliminaries

A variable is a svmbol representing a siugle coordinate of the Boolean
space (¢.9. a). A literal is a variabie or)5 negation (¢.g. a or). A
cube is a set C of literals such that £ € C implies F ¢ C (c.g.. {0.b.7)
is & cube. and {a.7) is not a cube). A cube represenis the conjunction
of its literals. The trivial cubes. written 0 and 1. represent the Boolean
functions 0 and 1 reapectively. An expression is & sel [of cubes. For
example. {{«a]. {b.2}] is an expression cousisting of the two cubes {«}
and {b.%). An expreesion reprenents the disjunction of its cithes.

A cube may also be writfen as a bit vector on a se1 of variables with
each bit position representing a distinet variable. The values taken In
each bit can be 1. 0 or 2 (or — or don’t care). siguifving the true form.

negated form and non-existence respectively of the variable correspond-
ing to that position. A miinterm is a cube with only 0 and ! entries,
A finite state machine (FSM) is represented by its State Transition
Graph G(\. E.W(E)) where V' is the set of vertices corresponding to
the set of states §. An edge joins v, to v, if there is any vector of primary
input values that causes the FSM (o evolve from state v, to state r,.
VW(E) is a set of labels attached to each edge. For the purposes of this
paper. we define each label as an ordered $-tuple < i,5.5 ,0 > where i

is a minteri over the primary imputs. s and s are minterms over the
state variables and o is a minterm over the primary outputs. The pair
< s .0 > corresponds 1o a mintermt in the output plane of a truth-table
representation of the FSM: for each edge we will refer 1o the set of all
such pairs as the output-labels of that edge. This label carries the
information of the value of the outputs and next.state resulting from
the transition. The pair < 1.5 > corresponds to a minterm in the input
plane of a truth-table representation of the FSM: for each edge we will
refer to the set of all such pairs as the input-labels of that edge. This
label carries the information of the value of the iuputs and previous-
state that caused the transition. !

We denote the primary input combination and present state corre-
sponding (o an edge or set of edges as / 0 s, where 7 and s are cubes
over the set of inpuls and states respectively. The fanin of a state, g isa
set of edges and 1s denoted fanin(g). The fanout of a state ¢ is denoted
fanout(g). The output and the fanout state of an edge (: @ s) € E are
o{(7 G s)) and n((i ¢ £)) € 1 respectively.

A starting or initial state is assumed to exist for a machine, also
called the reset state. Given a logic-level finite state machine with
Xy datches. 28 possible states exist in the machine. A state which
can be reached from the reset state via some inpul vector sequence is
called a valid state in the STG. The input vectlor sequence is called the
justification sequence for that <tate. A state for which no justification
sequence exicl< i< called an invalid state. Given a fault F. the STG of
the machine with the fauit is denoted (7. A differentiating sequence
for states sy and <, 1 a machine is a sequence of inputs 1, ...1x such
that if the machine begins in state s, the output associated with mput
ix is different than if the machine hegins in s1ate s;. Two states in a
STG G are equivalent if they do not have a diflerentiating sequence.

A STG G is said 10 be isomorphic to another STG G, if and only
if they are identical except for a venaming of states,

The fault model assunied 1< single stuck-at. A finite state machine
i assuined 10 be implemented hy combinational logic and feedback reg-
isters. Tesis are generated for stuck-at faults i the combinational logic
part.

A primitive gate in a netwoik i< prime if none of its inputs can be
removed withou causing the resulting circuit to be functionally diflei-
eul. A gate is irredundant if its removal causes the resulting circuit 1o
be functionally different. A gate-level circuit i said 1o be prime if all
the gates are prime and irredundant if ali the gates are irredundant.
it can be shown that a gate.level circuit is prime and irredundant if and
only if it is j00% testable for all single stuck-at faults.

We differentiate between two kinds of redundancies in a sequential
circuit. M the effect of the faull cannot be obsersed at the primary
outputs or the next state lines. beginning from any state, with any
mipit vector. the fault is deemed combinationally redundant. A
sequentially redundant fault is a fault that cannot be detected by
any input sequence and is not combinationally redundant.

To detect a fanlt in a sequential miachine. the machine has to be
placed in a state which can then excite and propagate the effect of the
fault 10 the primary outpuic. The first step of reaching the state in
question is called state justification. The second step is calied fault
excitation-and-propagation.

An edge in 8 STG of a machine is said to be corrupted by a fauit if
either the fanout state or an output-label of this edge is changed because
of the existence of the fault. A path in a STG is said to be corrupted if
at leact one edge in the path has been corrupted.

Internal single stuck-at faults in a logic network are faults on internal
Iis es (not priniary input or primary outputs) that are not equivalent to
single or multiple primary output stuck-at {aults.

3 Redundancies in Sequential Circuits

I thin section we characterize redundancies in sequential machines. We
present two views of the redundancier by looking at the effect of a
fault on the faulty State Transition Graph as well as on the gate-level
implementation of the machine.

' The reader need not be concerned over this rather verbose description of an FSA!:
it it usedt only for potational convenience in the proofs and none of the algorithms
reguire

Pl PC
— S
Combinationsl
Lagic
PS
FF's
A [
(@) ®}

Figure 1: A Sequential Circuit

A general imodel of a sequential circuit S. implementing a single TS\
is shown in Figure 1(a). Gates in the combinational network may be in
the cone of the output logic. the next-state logic. or both. The State
Transition Graph corresponding Lo one such machine is shown in Figuie
Hb).

Redundant faults in § may be combinationally redundant (CRF<|
ot scquentially redundant (SRFs}. Combinationally redundant CRf«
can be eliminated via combinational logic optintization alone {2} 17 iv’
and will not be discussed here. Sequentially redundant faults ‘can b
classified into three categories [8).

1. dnvalid-statc faults: The fault does not corrupt any fanout edge of
a valid state in the STG. but does corrupt the fanout edge of an
imvalid state.

~w

- asomorphie foults: The faolt recultc ina faulis macline thet
isomorphic (with a diflerent encoding) to the original maci«

3. cquiralent.state fault<: The fault causes the interchange/creation
of equivalent states iy the S1G.

In [R]. it was shown that any sequential redundancy must fall imro o
of these classifications.

Let us now Jooh at some examples of these fanlic A fanbiy STc0 con
responding toan turalid-statc SKI i< cshown i Figure 2(y Onls fapoe
edges from an imalid-ctate have been cortupted Thic correspaneds 1.
either output/uexi-ctate logic that i< nat combinationalts redund. o
but require< for detection that the state register of the machie he blice
with a state code that does not correspond to any vahd <vate Tin o
redundancies actually do oceur 1 practice when the pext-ctate jopa 1o
been optinuzed independently of the state assignment '

The effects of an tsomarphism SRE are shown in Figuie .. #1. w10 an
isoitorphic faulty machine (equivalent to the true maclune] s depicted
m which s2 and §3 have been interchanged. This occurs when 1l
next-state logic in the good machine which produced the state code
associated with 2, now produces tlie state code for s3. and rree 1o
Furtherimore. the out put logic is simultaneously modified by th. fauh
in such a way that the outputls due to state codes s2 and 3 are al<o
swapped.

In Figure 1{b). note that states s2 and s are equivalent staree. Ay
cquivalent-state SR i S miay produce the fankty STG of Figure 20ar.
where the only inpui-label associated with the edge < €1, <2 > i< noved
to & new edge < sl. 51 >. Furtlhiermore. the faull does not chang:
the terminal behavior of §. Ar s2 and s4 are equinalent. the faul i<
undetectable. This corresponds to a logic level change such that wheu
the state register holds the code for s1. on the mput “0” the fauliy next-
s!.)ate logic produces the state code for &4 rather than (he state code fur
2. .

Creating an irredundant sequential machine entails elininating the
sources of redundant fanlts. Tn the next section we describe soime gen.
eral procedures which eliminate the isomorphism SRFs and nvalid-st ate
SRFs. and partially elinnnsie equivalent-state SRFs.

4 Eliminating Redundancies in Sequential
Circuits

In this section. we will - . siuer general methods for elininating certain
clasees of redundancies ;- <<« ~(ial circnits. We will show that sinple
procedures imay eliminat. . ‘I-state and isomorphisin SRFs. but 1he
difficulty in synthesizing fu. . «cstable sequential machines is in elimi-
nating equivalent-state SRFs. 7 First. we give two results that relate
to the elimination of all three classes of SRF's.

21t may be worth noting here that despite the apparentiv meater complenity of
sequential ter generation relative 1o coanlinational te generation. thue problem i

(w)

<40
<1

() ’ T

Figure 2: 3 Types of Sequential Redundancies

4.1 Theorems Regarding Unconditional Testability

Variation< of 1he resulic below weie proven in [& (¢ Lemma 4.1
Theorems 4.2 and 4.4).

Lemma 4.1 : Giren a reduced scquential machine (vmplemented as in
Fignre 14 with N, < 2" states. where vois the number of tatches in the
machme. all sngle stuck-at faults an the primarvy mput (Pl)/preseut
state (PS) lines and all single and multiple stuckoat faults on primary
output (PO)/nert-state lwes (NS arve festable if the combinational lagic
of the machone s prome and gredundant with vespect to the invabd state
don’ care sl

This lenima usefully aliows us 1o limit om consideration of faulis for
any anachine. as long as we have made the combinational logic prime
and irredundant.

Theorem 4.1 : Giren a reduced sequential machme with 27 states,
where noas the mumber of latches tn-the machiue, 1f the combinational
logic of the machine as prime and vrecdundant and 1s mplemented
tiwo-lcvel form or algcbracally factored muitilevel form. then the ma-
chine as fully testable for all single stuck-af faulis m the combinational
logic

Proof: The terminal behavior of a reduced machine with 2" states
can only be realized by a machine with > 2" statec. No fault i the
machine can increase the numlai of states in the machine. Therefore.
the number of states in the faults $1G GF for any fault F is less than
orequal 10 2", I |GF} < 27, then F is testable. since G cannot realize
the terminal hehavior of the true STG ¢ If {GF| = 2", then GF has
to be isomorphic 1o G in order to realize the ternunal behavior of G.
Isomorphism imiplies an interchange of states and associated edges
i the STG of a macline. By Lemna 4.1. we only have o consider
internal stuck-at faults in the two-level or algebraically factored multi-
level network. If for each internal fault. the parity of inversions is the
same (either odd or even) for all paths 1o the next-state jatches. then
isomorphisin SRFs will not ocenr. If this inversion-parity invariant is
maintained then all the input-labels corrupted by a single internal-fault
uniformly result in all state codes in the faulty machine monotonically
increasing or monotonically decreasin(v, but not both. Thus, a single
fault could not lead to the swapping of state codes required to produce
an isomorphismm SRF. For example. a s-a-0 fault might resuit in the
nexi-state logic in the faulty machine producing state code < 001 >
rather than < 101 >, but the same fault could not aiso cause the next-
state logic in the faulty machine to produce state code < 101 > rather

also NP-complete when the input circuit is accompanied b 8 FSM description. The
sequential 1est generation problem is clearly NP.hard. and as any test sequence for
8 fault is bornded by the size of the input FSAL, a test sequence may be verified in
polvnomial time by a fault simwator. Thus the seq 1al Test generation problem
is also contained m NP.

than < 001 >. The inversion-parity invariance is naturally produced b
a nuiher of current synthesic procedures. Clearly internal fauli< jn a
two-level combinational network are inversion-parity imvariant hecause
all inverters are on the primary inputs. Similarly. circuits obtained via
algebraic factorization from two-level networks may also be directly ex.
pressed such that all their inverters are on the primary input<. Q.E.D.

The ahove theorem does not hold for FSMe< implemented by gen-
eral multi-level networks. nor for FSMs with State Transition Graphe
(STGs) with fewer than 2° states. where u is the puinber of latclies
in the machine. In Section 5 we define the notion of fauti-eflect .
Jointness which, when applied in a sy uthesis procedure, can gualantes
the complete 1estability of a general sequential circuit by encuring tha
each faulty =tate has an uncorruptible differentiating cequence. We now
proceed (o discuss tecliniques for the elimination of particular SKF«.

4.2 Eliminating Invalid-state SRFs

To eliminate these SRFs. it ir sufficient (o use codes corresponding (o
invalid gtates as don’t cares during logic optimization. An invalid-state
SRF is due (o the sub-optimal usage (or no usage) of these don’t cares.
These redundancies wiil not exit il the combinational logic i made
irredundant under this don’t care set.

4.3 Eliminating Isomorphism SRFs

There are many ways of ensuting that isomorphisni does not occur due
to faults in sequential circuits. Isomorphicm due to a fault i< escentialis
due toa sub-opfimal statc assignmcnt. The new encoding corresponching
to the isomorph represents a better machine (one with the redundant
line removed). A locally optimal state assigiment across any given
sel of stales can ensure that isomorphism does not occur in multj-lev el
circuits. across this set of states. It is worthwhile to note that optiial
state assigninent corresponds 10 the optimal neage of don’t cares = v
does not care what the codes of the diflerent statec are <o Jong ac te:
are distinet.

Two-lesel realizations and algebraic factorization also eliminate 1l
possibility of isomorphisin SREs (by the arguiments used 1 Theoremn
4.1).

4.4 Eliminating Equivalent-state SRFs

Equinalent.cstate Slle< are gelated 1o equinalent valid valid and
vahd /imalid state paire a sequential machoie. Given a teduced maclion.
a [ault that corrupts a single edge gotng toa fanita bhut vahel. ctane o
not be responsible for a SRI. since all vahid statec are distimgisliato.
Thus. au mitial state mnnmization will prechude the ocenirence of 1.
SRY of the formin Figure 2ta). Howeves. we mnay have a case wheie 1
fault resulicin a invahd next state that is equivalent (o1 becomes equin
alent) to the true next state. This icjllustrated i Figuee 3.0 We hiav
the true STG in Fignre 3(a). that is state mmmal. The malid «tare
§4’s code has been used as a don’t care and <4 is equinalent 1o state <!
after logic minimization under this don’t care condition A fault coukl
tesult in the scenatio shown in Figure 3(b). whete a < ngle cotrupued
edge whose frue next state is <2 produces a fauhy nex state. s4. {he
fanlt is redundant. Equivalent.state SRi< due to these valid/invalid
state pais pose major difhiculties for testability-driven sy nthesic and we
devote the remmamder of the paper to discussing a spectrum of techinpuee
that elininate thein.

5 Distinguishing Sequences and

Equivalent-State SRF's

The most general paradigni for the elimination of equiralent.state SR«
i= to ensure that for each faulty /fauli-free state pair produced by a faukt .
at least one differentiating sequences existe whicli i< not destroved In
that fault. This is a necessary and sufficient condition and while ob joue.
we encapsulate it in the following observation.

Theorem 5.1 : Gicen a sequential machine wal no combinationally
redundant faul(s. mralid-statc SRFs or somorpnism SRFs. if for cach
Jaslt in the machine af least one (posaibly multipic-veetor) diffcremtrating
scquence for at lcast one fanlty/fault-freic &t o pair produced by a fawlt 0
the machine is refaincd in spifc of the fav 1. then the reanlting sequential
machine is fully tcatable.

There are two conditions under which a differentiating sequence is
retained. The first in that the fault which produces the fmﬁl) /[!.nh.fm
pair does in fact corrupt the diflerentiating sequence. but the hehavior
of the faulty machine is atill distinguishable from the good machine. For

(s) (b

Figure 3: A Complex Equivalent Staie SRF

instance. say two states g, and g¢; on receiving the input i) produce out-
puts o) and o, respectively. if ¢,/¢; appears as a faulty /{faul(-free state
pair due 1o a fault. f. then f may corrupt oy lo 0y/. The differentiating
input 1y is still retained if 0,/ # 0;. This condition is discussed in Sec-
tion 5.4. The second condition for retainment is (liat f does not corrupt
0,. or nore generally that any fault which creates an faulty /fault-free
state pair does not corrupt the differentiating sequence for that state
pair. We discuss this in the following sections.

5.1 Fault-Effect Disjointness

The elimination of equivalent-state SRFs is ensured when differentiating
sequences. for possible faulty /fault-free state pairs produced due (o a
fault. are uncorrupted by that fault. These sequences may. of course, be
corrupted by other faults. This is accomplished by defining the notion
of fault-effect dicjointness (FE-dicjointness) between a pair of edges and
applying it to combinational networks.

Definition 5.1 : Giren a FSM M. o STG G representing Ml and a
Ingie-level smplementation L of M. a fawlt [15 said 10 pertarb an mnput-
lobed i of an edge « 1o G aff the fault i L canses the mnput-labei 0 be
removed from ¢ (and mored to another edge).

Every fault that perturbs an edge corrupts the edge. but a faull ma
corrupt an edge without changing the fanout state: whereas every fault
that perturbs an edge changes the fanoul state.

Definition 5.2 : Giren o FSM M and a STG G representing M, a
logie-lcvel emplementation L of M and fwo inpui-lahels my and my of
tno edges ey andeq tn G the lwe labeds 1oy and sy ave sasd 10 be FE-
disjoint orer a sef of faults F € L if no fault tn F corrupts both m, and
m,.

Based on FE-disjointness alone. we can define a general procedure
that produces fully testable sequential machines.

Theorem 5.2 : If each of thc inpuf.labels in af least onc (possidiy
multiplcsveetor) differentiating scquence of of least one faully/ fault-free
atate pair produced by a fault in the machine are made FE-disjoint from
the mpul-/r;bn‘ whose pcrtarbation cavsed the fawlty/fanlt-free state pair,
then the reswlting scqueniial machine s fully testable.

Proof: Since at least one differentiating sequence for a faulty/ fault-
free pair that is produced due to a faull is uncorrupted by the fault.
traversing the input-labels in the differeutiating sequence will detect the
fault at the primary outputs. Q.E.D.

The following points are worthy of note:

1. Possible faulty /fault-free pairs: An extreme case corresponds
to a fault resulting in all ible pairs of states becomin
faulty /fault-free state pairs. However. depending on the type ol
implementation. the efiect of a fault varies. For example, internal
faults in a two-level or slgebraically factored network uniformly
produce a 0 instead of a 1. or a 1 inslead of a 0 at the outputs they
are propagated to. Logic partitioning can restrict the set of outputs

a fault can be propagated to. in two-level or genteral piulti-lesel et

works. Syihesis procedures can be characterized by restrictions an
faulty /fault-free state pairs that can occur. placed via conctrami«<
on logic optimization.

2. State assignment: State encoding controls what sgmbolc states
are produced as [aulty /fauli-free pairs. Consirained state assigi-
ment can be used in conjunction with logic optimization 1o restrict
what symbolic states can appear as faulty /fault.free state paire.
We do not explore this approach furtlier in this paper.

3. Obtaining FE-disjointness: Forany fault f.a valid/invalid state
pair is first activated by an input in a particular state. r.¢. by an
imput-label. Each of our procedures ensures that the fault f which
perturbs the input-label m; and produces the valid/invalid state
pair does not also corrupt the differentiating sequence (c.g. ;)
for the invalid/valid state pair. Thic is ensured by making the
input labels m; and my FE-disjoint. There are several imethod<
of obtaining FE-disjointness for a pair of input-labels over a fauls
in & FSM implemented by two-level or multi-level combinational
logic: different methods are characteristic of different synthesis ap-
proaches. For example, partitioning the output and next state logic
I & sequential machine ensures that the output of a faulty state
(produced by a fault in the NSL block) is not corrupted by the
fault. Optimal usage of don’t cares represents another techniyue
to ensure FE-disjointness.

4. Multiple-cycle differentiating sequences: It geueral. differen:
tiating sequences for a given pair of states may have lengths greate:
than 1. In this case. we require the input-label m, whic?n acti-
vated the faulty/fault-free siale pair to FE-disjoint from earh
of the input-labels m;...mx corresponding to the differentiating
sequence for the [aulty state.

We will now show how previously proposed synthesis procedures can
be viewed as different approaches to insuring the invariant given in
Theorem 5.2. In Section 5.2 we consider procedures that ensuie k-
disjointness through a highly restricied implementation. Thi< proceduse
has the advantages that it is computationally inexpensive and the tine
for generating tesis for the resulting logic is also reduced (see Section
)

In Section 5.3 we show that FE-disjoininess can be maintained i
two-level circnite by modifving the initial Boolean cover. The 11 .
disjointness invariant can then be further retained i a nuidticdevel gy
plementation hy constraining the algebraic factorization of the oo]
tmplementation. The resultimg implenwntation has significantly fewer
restrictions than the implementations resulting from the constiaine !
syptheas procedures described in Seetion 5.2 and 1l pesnlte i <pabie
inplementations (see Section 6). Fhe procedures based on covering and
factorization also have many degrees of freedom in their application
They may be applied so as to minimize computation time with the
potential for an inferior implementation or they may be applied so ac
minimize the size of the implementation at greater computational cost.

Finally. in Section 5.5 we discuss a procedure that achieves an optimal
implementation by iteratively removing SRFs. Such an approach main-
tains the FE-disjointness invariant as well. From the results iu Section
6 we see that this approacli is the most computationally expensive bt
also produces the smallest logic.

5.2 Constrained Synthesis Procedures

The procedure of [7] adds edges to the initial STG specification to raise
the number of states in the STG to 2", where n is the nuniber of latches
in the machines. Thus. no invalid states exist in the machine. If the
added pseudo-valid states are not equivalent (o the other states in the
machine, then by Theorem 4.1. full testability is ohtained in a two-level
or algebraically factored multi-level implementation. The procedure
ensures {ull and easy testability in a general muliti-level logic implemen-
tation. via constrained state assignmwent and logic partitioning. 3 The
synthesized machine is easily testable in the sense that the length of a
differentiatiug sequence for any possible faulty /fault-free state pair is
limited to 1.

In Figure 4. the architecture ured by the procedure for a Mealy ma-
chine is shown. Each of the next state (NS) lines has been realized as
a separate circuit. The constraint on the siate assighment is that any
g:ir of states that cannot be distinguished via a single-vector sequence

given codes at least of distance-2. We state the following theoren
to put the procedure of [7] in context of FE-disjointness and Theorem
5.2. Only internal faults are considered since P1/PS/NS/PO f{aults are
testable by Lemma 4.1.

M this proredure a jocally optimal state sssignment is not required for full
teatability in a general multi-level miplementation

oL PO

L]

¥

FF

Figure 4: Architecture of Partitioned Mealy Mochine

Theorem 5.3 : The procedure of [1] results m a machine where all
possible faulty/fauli-frec state parrs duc 1o an tnternal fanlt have differ-
entinting sequenees of length 1. that ave FE-disjomnt from the tpui-label
whese perturbation cansed the fanlty state.

Proof: An internal fault in the OL block can only be propagated to the
POs and thus cannot cause a faulty state. Without loss of generality,
consider a fault in 151 NS line partition. Since the combinational logic is
irredundant. an input-label and present state exist that propagate the
effect of the fault 1o the 1st NS line. Therelore. the faulty state will
differ from the true state in the 1st bit alone. The stale encoding is such
that the faulty /fauli-free state pair possesses a differentiating sequence
of length 1. The partitioning of the OL and NSL blocks guarantees
FE-dicjointness of 1he diflerentiating vector from the input-label whose
perturbation caused the faulty /fault-free state pair Q.E.D.

Note that thic theorem in conjunction with Tieorem 5.2 ensures
full/easy testability for the cynuthesized FSA)L

The constrained synthesis procedure that we presented here main-
taing fauli-effect disjointness at a considerable area penalty. [n the
following sections we present procedures that are less restrictive on the
optimization steps in synthesis.

5.3 Retaining FE-Disjointness Through Covering
and Factorization

5.3.1 Fully Testable Machines with Two-level Logic Imple-

mentations

The notion of fauli-effect disjointness (FE-disjointness) can be applied
to two-level logic minimization in order 1o procuce two-level combina-
tional logic networks implementing FSAl< that are fully testable. The
proceclure described here is primariiy concerned witl differentiating se-
quences of faulty fauli-free state pairs. These pairs are such that the
fanlty state ix an invalid state. since. by the arguments of Theorem 4.1.
if only valid states are produced as faulty states, full testability can be
oblained via a standard minimization strategy. Also. we will be deal-
ing only with internal faulis in the network: Lenuma 4.1 guarantees the
unconditional tesiability of primary input, present state fine, next siate
line and primary output stuck-at {auits.

The sirategy used here modifies the logic minimization process using
the invalid states as don’t cares. 8o for each invalid state 1o the foliowing
conclitions are satisfied.

1. Ic is not required to detect any fault F in the machine S.

2. Ir i= distinguishable from any valid state in a specified number
(> 1) of state transitions or iv never appears as s faulty next state,
that is equivalent Lo the true next atate.

The gonl of the minimization procedure is 1o satisfy Conditions | and 2
and produce an area-minimal logic cireuit. The prime implicant genera-
tion and covering stepe that are basic Lo iwo-level Boolean minimization
are modified to this end.

We now apply the notion of FE-disjointness to two-level networks.

oL PO oL PO
Pl NSL Pl NSL ~’
pPs AK PS NS
(a) (h)

Figure 5: Moore and Mealy Finite State Machines

Definition 5.3 : 4 Distance-k-prime-cube (D-k-prime-cubr) of a
prime cube e 15 a cube that has cractly the varables of ¢ and a 1 () 1
eractly k positions where ¢ haz a 0 (1). in anyg combination.

It is only meaningful Lo 1alk about a D-k-prime-cihe relative to : par-
ticular prime cube, but whenever the prime cube that is being referred
to is unambiguous we will use the termy D-k-prome-cube to :ﬁ)brc\ late
D-k-prime-cube rclative fo a prime cube.

Lemma 5.1 : Green M. G and a two-lerel anplcmentation of T of /.
and a smgle internal fawlt [o0 T that pertuvhs an mput-label 1 aof an
edge e 0 Goaf f 1 a s-0-0 fault an the output of an 4ND gate ¢ of |
then voas contarned within the prone cube associated wath v, oand f 14
a s-a-1 fault on the viput of an AND gate g, of T then moas contamed
wtthin @ D-1-promc-cube rdlatiec to g, .

Proof: Firsi, observe that we can collapse the internal fanlic iy a 1w
level network 1o s-a-1 faulis on the AND gate inputs. s-a-0 faultc at AN
gate outputs and =a-0 faulis at OR gate inputs. S-a-1 faultc at AN
ale outpuls and OR gate inputs are equivalent to single or multipl.
%’O s-a-1 faults, S-a-0 fanits at AND gate input< are equivalent 1o the
corresponding «a-0 fault at the AND gate omput,

Suppose fisasa-0fauh atthe ontput of an AND gate g, Topeituch
m. f must canse m 1o move to another edge ¢ ;. Only those inpur-labels
contained within the prime cube associated with g. will e affected b
the sa-@ fault. thus nr is contained within the piine cube ascoriate!
witli g,. Note that assuming complete observability of all outpuis and
next-state lines one can view m as a test vector for J.

By a similar argument. for an input label m to be affected by a <.a-t
fault f on an OR gate input. m must be contained within the prnne
cube associated with the gate g, that fans out 1o the aflecied OR gate.
Thus the set of input labels perturbed by a =a-0 fault on an OR gate
input that is fed by an AND gate g, will always be a subset of the input
labels aflecied by a =-a-0 fault on the input (or output) of ¢,.

Suppose f is a s-a-) faull at the input of an AND gate g, To pertm),
m. [must cause m 1o move to another edge ¢,. Only those input-
labels contained within the D-1-prime-cube relative to the prime cube
associated with g, will be affected by the s-a-1 fault. thue m 1< comtained
within the D-I-prinie-cube. As before. assuming complete obeervability
of all outputs and next-state lines one can view m as a test vector for

Q.E.D.

We can state a theorem regarding snfficient conditions for 1wo elge
labels to be FE-digjoint over s-a-0 or -a-1 internal faults in & two-level
network.

Theorem 8.4 : Given M. G aud T as abore, two tnput-labels iy and
my are FE-disjoint over infcrnal 5.a-0 (s-a-1) fawlts in ¢ two-lcvel nel.
work. if one of the following conditions is salisficd:

1. my and iy ave nof both contained in any prime (nof both contamed
in any D-1-prime-cube) in T.

2. iy and my are both contained in & prime py (or in a0 D.1-prom.
cube of a prime p;). and my or my is conteined in some othcr
prime py that asscris the sermc onlputls as the prime py for p,).

Proof: First. conrider Condition I. By Lenma 5.1, for an input-label
to be perturbed by a s-a-0 fault it must be contained in the prime
cube associated with the fanliy gate. Simiarly, for an input-iabel 10 be
perturbed by a s-a-1 fault it must be contained in the D-1-prime-cube
aseociated with the faults gate. Thus for two input-labels to both he

corrupted Dy a given s-a-0 (s-a-1) fault they must both be contained
within the same prime cube (D-}-prime-cube). If this condition is not
met then no fault can simultaneously perturh both edge labels.

Next. consider Condition 2. If F is at the input { of an AND gate, for
F o truly perturb an input-iabel m no other AND gate feeding the OR
gate asserting the PO. can have a | at its output on m. This implies
that if m is perturbed by F. for each PO fed by g;. the input-label m
cannot be contained in any of the primmes corresponding to the other
AND gates feeding the PO. Thus. the input-labels perturbed by F are
restricted 1o those that serve as primality tests for ! in p,. Counsider a
s-a-0 fault. F. at the output of an AND gate g, and associated prime
p2. For F 1o perturb an input-label m. no AND ela(e feeding the sanie
OR gate(s) as g can have a 1 at its output ou . This implies that if m
is contained in A prime asserting the sanie outputs as gz. it will not be
perturbed by F. Thus. the input-labels perturbed by F are restricted
to those that serve as irredundancy (ests for p;. Q.E.D.

We now define a procedure that produces a fully testable Moore ma-
chine. under the architecture of Figure 5(a).

1. The OL biock is minimized with the invalid states used as don't
cares. attempting to make sure that a maximal number of invalid
states produce different output combinations from all or a maximal
number of valid states. If all invalid states produce diflerent outputs
from each of the valid states. unconditionally minimize the NSL
block and exit. (Two invalid states are allowed to produce the
same outpul).

. For each invalid state iv;. find the set of valid states
v = Qi - gin, that assert the same output combination as
the invalid state. and such that ivy D gy or gy D7y,

3. Perform a two-level Boolean minimization on the logic of the NSL
block. meeting the following conditions:

(a1 1 se the imalid states as don’t cares for all primary input val-
ues.

(b) For each invalid state ir;. ensure that there exists a Pl vector
i, that distingnishes iry and yi; € Q;. 1 £ j < Np. That
is. i1, produces different next staies for rry and gz, such that
the next stales assert different output combinations. via an
appropriate selection of primes. Also. the vector pairs corre-
sponding to v € funin{gy,) and iy, ‘@ iv, are constrained to
be FE-disjoint over {each individual fault in) the s-a-0 (s-a-1)
internal fauhis iy the network corresponding to the cover if
Gi, D e (frr D qiy) via an appropriate selection of primes
that satisfy the condition< of Theorem 5.4

Theorem 5.5 : If the procedun abore completcs successfully. tf pro-
duces a fully 1estable Moowe machine.

Proof: Fauitsin the OL block can be detected by justification sequences
10 the appropriate valid states that propagate the fault to the POs.

Consider an internal fault F in the NSL block. If F results only in
faulty next states that are valid states or inalid states asserting different
output combinations from the true valid state. then F is testable. We
have to consider the possibility of F resulting in a faulty /fault-free state
pair that corresponds 1o an invalid-valid siate pais. namely vy, ¢,.
which botli assert the same output combination.

Since F is an mternal fault. it can onhy monotonically increase the
fanliy state bits or monotonically decrease them (c.f. Theorem 4.1).
Therefore. iy D qi, or qiy D rry.. We can thus discard faulty /fauli-free
state pairs that do not satisfy these conditions at Step 2. If fv,. qu;
appeared as a faulty /fauli-free pair. it means that v € fanin(qi;) was
corrupted 10 ivg. instead of qi,. ¥ ¢r; D iri. then it means we are
dealing with a s-a-0 fault. Then. a differentiating vector iy, for ive. qi,
will not have been corrupted since 1, @ vy and v are FE-disjoint
over the s-a-0 internal faull set. \We can similarly argue the s-a-1 case.
Thus. we can detect F in the next state transition. via the uncorrupted
differentiating vector for iry, qu,. Q.E.D.

The procedure is easily extended to the Mealy machine case (Fi;-
ure 5(b)). The procedure to produce a fully testable Mealy machine is
similar 1o the Moore machine procedure. except that during the mini-
tization of the OL block. we can make choices as to what vectors can
be used to distinguish the invalid and valid states, while maintaining
primality and irredundancy of the OL block cover. During the min-
imization of the NSL block. we effectively ensure for state pairs that
do not have a differentiating vector that a two-vector differentiating se-
quence for the pair is uncorrupted, if the two states are produced as a
faulty /fault-free pair.

Finally. the procedure can be extended to synihiesize Moore or Mealy
machines under the lumped architecture of Figure 1(a). ln this case, we

have more FE-disjoint ness constraints. since we have 1o ensure that tle
output asserted hy an invalid state (nnder some primmary input combi-
nation) it uncorrupited if the state ie produced as a faulty state. If the
output is not distinet from the output produced by tire true s1ate. then
the next state of the {aulty state has to satisfy the condition described
in Step 3(b) aborve.

5.3.2 Fully Testable Machines with Multi-level Logic Imple-
mentations

We wish 10 extend the results of the previous section to mwlti-level i
plementations. A< Yefore the paradigm followed ic 1o ensure that the
differentiating sequences. for possible faulty /fault-free state pairs pro-
duced due to afanht, are uncorrupted by that fault. This is accompliched
by applying the notion of FE-disjoininess between a pair of edges io
multi-level combinational networks. Guaranteeing FE-disjointness he.
tween two input-labels is more complicated in a multi-level implemen-
tation than in a two-level implementation. Thix is due to the fact that
a single fault in a multi-level implementation may be equivalent to a
multiple fault in a two-level network. To simplify things we restrict our
consideration to those multi-level networks that are the result of an al-
ebraic factorization [4] of a prime and irredundant two-level network.
f'nfortunalel_\'. space limitations niake a review of key logic synthesi
concepts such as cube. kernel. kernel-cube and factor impossible. bhut
3] gives a good treatment of these ideas. Recently. it was shown in [
that each single internal fault in an multi-level implementation that wac
algebraically factored from a prime and irredundant two-level network
is equivalent to a multiple internal fault in the two-level network. In
particular. it can be shown that any single internal =-a-0 (s-a-1) fauit i
an algebraically factored network is equivalent Lo a s-a-0 (=-a-1) mulii-
ple faull in the associated two-level network. We therefore begin with
perturbation couditions for input-labels under a multiple fault in two-
level networks. and then apply these results to algebraically factored
networks.

Lemma 5.2 : (even M. G and T as o Lemmn 5.1 and a mulnpl
s+a-0 tnternal fault [an T, if [porturbs an input-tabcd m o G ther
erery prime in which m s contamed must have been afficted by the
Joult. Furthcrmorc. that perturbation cavses some meri-statc variable
thot formerly was 1 1o beeome 0.

Proof: The effect of an internal «-a-0 fault on a primme i to remore
that prime from the cover. The effect of a number of internal s.a-¢
faults is to remove each affected prime from the cover. Thesc miscing
primes aflect the network in a predictable way: If all the primes thiat
covered an input-label are missing then that input-Jabel which former Iy
resulted in some next-state o1 pritmary ontpul variables having the valne
} now results in those saine variables having the value 0. If next-ctarn:
variables are affected then the input-label i perturbed. Note that it i
necessary {or all primes covering an input-label (o be affecied before the
input-label perturbed. Q.E.D.

We wish to use thic lemma to arrive at conditions for input-labels 10
remain FE-disjoint in the presence of a single internal s-a-0 fault in an
algebraically factored multi-level network.

Theorem 5.6 : Giren M. G and T as above, It 4 be an algcbraic
Jactarization of T. Let iy and mq be twa inpui-labels of G and L1],
be the set of all primes of T that corcr miy and let Py be the sef of
all primes of T that caver my. The two inputdabels my and 1y i o
arc FE.disjornt ovcr intcrnal s-a-0 faults in A, af both 1wy and my are
nof contarncd m any singlc prime cube i 1" and no factor cxtracicd i
the factovization of A confains cnbcs common fa cvery prime 1 Py and
every prime in Py,

Proof: That both m, and m, are not contained in any single prime
cube in T is simply restating the condition of Theorem 5.4. Note tha
this condition implies that Py and P; are disjoint. By Lemma 5.2, in
order for a s-a-0 fault 10 perturh m,. it must affect every prime in P,
and similarly in order for a s-a-0 fault to perturb m;z it must affect evers
prime in P;. 4 If a single s-a-0 internal fault in A perturbs m, and m,
when the {ault is applied and A is collapsed to two-levels (the inverse
operation of factorization). then every prime in both P, and P; must
have been aflected. For this to occur. during factorization there must
either be some cube factor ¢ such that ¢ ie a sub-cube of every prime in
both P, and Pj. or there must be some keruel factor £ such that some
kernel-cube of k is 8 sub-cube of every prime in P, and every prime in

P Q.E.D.
Using these results to arrive at an algebraic factorization A in which
my m; are FE-disjoint with respect to any internal s-a-0 fauit re-

quires first building sets P, and P;. During cube extraclion. a cube

4Certainly. primary input (aulia can produce such an effect but such fanlia are
wasily detectable by other means.

—i

¢ is eliminated from consideration as a factor if ¢ is a sub-cube of ev-
ery prime it Py and every prime in Pz. M this cube were allowed. a
s-a-0 fault on the output of the gate associated with the cube coukl
potentially eliminate all prines in Py and P, and as a resuli perturb
both 1, and m;. During kernel extraction [3]. & kernel & is elininated
from consideration as a factor if every prime in Py and every prime in
P; contains as a sub-cube some kernel-cube (it need not be the same
kernel-cube i each case) of 4. If this kernel were allowed. a s-a-0 fault
on the output of the gate associated with the kernel could potentially
eliminate all primes in Py and P, and as a result perturh both m, and
my. All other factors are viable. 1t is worth noting that while such fac-
tors that violate the FE-disjointuess condition may exist. they appear
1o be highly unlikels.

Characterizing the influence of &a-1 faults in a multi-level network is
more complicated than that regarding sa-0 favlts. In the case of s-a-0
faults. each input-label m that is a member of the ON-set is covered
by some set of primes and for m to be perturbed all of those primes
must be affected by some s-a-0 fault. If an input-label m is a member
of the QOF F-set then for each prime pin T there exists a & such that m
is contained in a D-k-prime with respect to p. and a multipie s-a-1 fault
affecting any of the primes in T may perturb m.

Lemma 5.3 : Guen M. G and T as above. and a multiple s-a-1 inler-
nal fault { on T. if f perturbs an mput.labelm in G then m is contained
within a D-k-prime relative 1o an affccted prime of T and m 45 not con-
fommed 1 any other prame of T. Furthermore. tha! perturbation results
tn some werl-gtate veriable that formerly was 0 1o become 1.

Proof: The effect of an internal s-a-1 fault on & prime is to expand
that prime in the cover. The effect of a number of internal s-a-1 faulis
is 10 expand each affected prime from the cover in each literal that is
ca-1. These expanded literalc affect the network in a predictable way:
Some input-labelc that formerly resulted in primary outputs and/or
next state vaiablec heing 0 now result iy those same variables being 1.
The inpui-tabels that will be thus aflected are exactly those input-labels
that are contained within a D-k-prime relative to an affected prime. Foi
instance. if the prime cube abed 15 affecred by faults @ and b s-a-1 then
any input-label contained in the D-l-primes o bed or ab'ed or the D-2-
prime a' b ed will be perturbed by this multiple fault, unless it is already
contained within sonte other prime in 7. Q.E.D.

We wisli to use this lenuna to arrive at conditions for input-labels 1o
remain FE-dispoint in the presence of a siugle wlernal s-a-1 fauit in a
algebraically factored multi-level network.

Theorem 5.7 : Guen M. G ard T as abore. let 3 be an algebrare
Jactovization of T. Let gy and oy be twoe mput-dabels of G The tuo
mput-labels wmy and my 10 G are FE-disjoint orer infernal s.o-1 faulls
m A. if no factor of A contarns a cubc ¢ such that if each lhteral of ¢
s crpanded 0 cach prime m A v which ¢ appears. then there docs not
erist an crpanded proime p in T that covcrs my and an ezxpanded prime
gt T that corers my.

Proof: e are concerned with identifiing the circumstances unde)
which both m; and m; are perturbed by a single s-a-1 fault. For each
of nry and) 1o be perturbed. it must be contained in some expanded
cube. A =a-} fault in a cube factor ¢ results in raising each literal of ¢
in each prime in T from which ¢ was factored. If no expansion resuli-
ing from a s-a-1 fault on any factored cube simultaneously covers m)
and iy, then iy and my are FE-disjoint under any internal s-a-1 fault,

To use these results 10 arrive at an algebraic factorization A in. which
iy and m; are FE-disjoint with respect to any internal &a-1 fauit, it is
sufficient to consider the impact on the network of a e-a-1 fault on each
potential factor. Specifically. during kernel extraction. a kernel-cube ¢
1s eliminated from consideration as a {actor. if expanding the literals of
¢ in each prime in T in which ¢ appears, results in an expanded prime p
that covers 1) and an expanded prime ¢ that covers m;. Similarly, in
cube extraction, a cube ¢ is eliminated from consideration as a factor,
if expanding the literals of ¢ in each prime in T in which ¢ appears,
results in an expanded prime p that covers i) and an expanded prime
¢ that covers m;. For example. assume we are given the i:\mction F=
abed + abe'd and inpui-labels my = a bed” and mg = ab'¢'d. The cube
ab would not be considered as a {actor because a s-a-1 fault on ab woul
result in m; being perturbed by the expansion of the prisne abed to

and m; being perturbed by the expansion of prime abe'd to c'd.

5.4 Fault Simulation

The procedures discussed in Section 5.1 seek to retain differentiating
sequences by ensuring that any fanlt which produces the faulty /faull.
free state pair cannot corrupt the the dilferentiating sequence for that

pair in any way. In this section we consider the situation in which ¢l
fault 1hat produces the faulty /fauli-free state pair doe< in fact corrupt
the differentiating sequence. but the diflerentiating sequence. o1 a sulb.
sequence of it. still has differentiating behavior for the faults /fault-free
state pair. The circumstances under which thie condition occurc are «o
difficult to classify that we can find no general condition in synthesic
which ensures this. ® For this reason we suggest fault sinulation as
the best way to recognize the maintenance of a differentialing cequence
even when it is corrupted by the fault it was intended (o deiect.

To motivate thic situation. consider the seenario in whicl, we aj.
given a circuit implementing a sequential imachine and for each fault [
i the circuit that produces a non-empty set of faulty ffauh-free paire
P = {pi.p1....pm) and for each p, in P we are given a non-emp(y set of
differentiating sequences S, = {s,). $,2. ... §,m) that present deteci
the fault. The wplementation could have been produced by oue of the
previous synthesis procedures in the section or by maunal design. Sun-
ilarly. the diflerentiating sequences could have been produced manualis
or via automatic tesi-patiern generation. We then wish Lo optimize the
circuit in such a way that the full testability of the circuit is retained.
To be certain that we have a fully testable machine we wish to ensure
that these requences are retained after optimization.

A simple approach to determine il the optimized machine is s(it! fulls
testable is to fault simulate cach s,; on f. If the behavior of any =,
is unchanged by f then a differentiating sequence for f clearly exict<
The more interesting case is where the behasvior of all members of &
is changed. In this case we further analvze the reculic of 1he fant:
simulation of each s,, to see if the hehavior of the faulty machine i< still
different from the behavior of the true machine. As long as the behaior
differs. s,, is still a differentiating sequence for f.

As stated in Theorem 5.1. we only reqgnire one differentiating secuence
for enc faulty /ffault-free state pair produced by a fault 1o he retaned.
A fault may produce severaf faulty /faufl-free state paire based on wha
excitation vectors are applied. These state paire will ypicalhy has
multiple differentiating sequences. A CPU jntensive but less geatpietive
procedure might simulate all poseible differentiating sequeices for all
possible fautty /fault-free state paire due to a given fault. and cliech 1o
see if any one of themn is retained . A computationally efficient hut jesce
optimal/inore restrictive procedire may focus on a particular differenti.
ating sequence for each possible faulty /fauli-free state pail and chiecking
Just the one for retainment.

A< mentioned earlicr. the diflerentiating sequences may be either <in-
gle or multiple vectors. 11 they conaist of multiple veciors a «ituaton
may arise where a fanlt corrupts some juput-label o1 outpui-jahel a-.
sociated with an infermediate mput vector, with the result that a suh.
sequenice of the original differentiating sequence 1€ now a differentiating
sequence. For example. the sequence <3 e s, might be copupted
in such a way that the sub-sequence s)...s,, i now a differentiating
sequence.

5.5 Optimal Synthesis Procedures

The procedisres of Sections 5.1 and 5.4 sougin to directly encnre that
particular differentiating sequences are retained. lere we review a syn-
thesis procedure that siniply guarantees that a differentiating sequence
for a valid/finvalid state pair will aiways exist.

The procedure of [R] uses repeated logic minimization 10 achieve FL-
distointness hetween each of the input-labels i a differentiating se.
quence of invalid/valid (faulty /fault-free) siate pairs and the input-label
whose perfurbation caused the invalid fauliy state.

Given an incompletely specified combinational logic function. we can
obtain a prime and irredundant implementation of the logic function.
in two-level or multi-level form. that has the following properties:

1. An input test vector exisis for every single stuck-at fault in the
logic network that lies ontside the don't care (DC) set and in the
ON or OFF-sets.

2. At least one of the output values that differ in the true and fautty
circuits. on the application of this input test vector. will not corre-
spond to a don’t care output condition.

1 the procedure of [8]. the approach taken is that the redundancy of
Figure 3 exists because we hiave not exploited the don 't care correspond-
ing to the edge (0. 83): we can specify n(0. £3) = (s4. 52} and not
just 62. The following procedure of repeated logic minimization guar-
antees upon convergence that equivalent-state and invalid-state SRFs
don’t exist in the resulting machine.

?liminute-equivalent-ltate/ilomorphiom-SRFa(S

SSpecific kynilenis procedires can exploit the fact that differentinting sequeines
may be corrupted and still retained

—

iter = §:
do {
if (iter = 1) G = extract-stg{ S):
else G = extract-stg(S"):
foreach (valid state g € G) {
Find all valid states (1y. .. v,)= ¢
Find all invalid stat- 1. .. iv,) = ¢
D(Cy: fanin(g)} - [TSNE T TR 120

Find all input-labe. . , differentiating g and s ¢ :
DCy: fanin(g) = (g. s) && nliy .. q) = nlig ,. §)
o("q.‘- (l)=0('q..-- s):

§' = optimize(S. DCy. DG)} :
1V = extract-invalid-states(&'):
S$” = optimise(S'. DCjy) :

iHer = iter 4 1;

} while(S # 8"):

The procedure optimize() produces a prime and irredundant two-
level or multi-level network under a don’t care set. DC) corresponds
1o the don't cares described above. DC; is a more complex don’t care
whose usage ensures that the invalid faulty state does not become equiv-
alent to the true valid state. DCyy- corresponds to the don’t cares due
to invalid state codes.

Theorem 5.8 : The procedure of [8] guarvantees that af least one in-
valid/valid fanlty/favli-frce state pair produced due 1o o faull possesses
a dl!é rentiating sequence that is FE-disjoint from the inpui-label whose
perturbation caused the faulty staic.

Proof: The procedure has specified don’t cares corresponding 1o the
equivalence of invalid/valid state pairs. Given that the combinational
logic implementation is prime and irredundant under this don’t care
set. DC'y. we are guaranieed an input-label perturbation outside DC.
i.¢. the faulty state produced by the input-label will not be equivalent
1o the true state. Further. using the don’t care set. DC;. will ensure
that the fanomt of the invalid faulty siate is not corrupted to make the
invalid state in the faulty machine equivalent to the true state, i.e. a
dilferentiating sequence of the invalid/valid state pair produced will be
FE-disjoint from the perturbed input-label. Q.E.D.

Note that this theorens in coujunction with Theorem 5.2 ensures full
testability for the synthesized sequential machine

6 Results

In this section. we present preliminary experimental results using the
synthesis algorithms presented in Section 5.

A standard synthesis procedure was first adopted. The procedure is
as follows:

1. State minimization.
2. State assigniment (unconstrained).

3. Two-level Boolean minimization using the invalid states as don’t
cares.

4. Mulii-level logic optimization (both algebraic as well as Boolean
operations).

. After synthesis. tests were generated for the circuit using the se-
quential test generator. STALLION.

I

Nexi. we used the synthesis procedure described. The procedure was
as follows:

1. Same as Step | above.

2. Same as Step 2 above.

3. Two-level Boolean minimization with constrained covering.
4

. If each invalid state asseris different outputs from ali the valid
states. then an unconstrained multi-level logic optimization step
was performed. Eise, two different options were exercised.

(a) Strictly algebraic factorisation was performed. After fac-
torization. the resuliing network was analyzed to check for
cube and kernel faciors that could potentially cause redun-
daucy. The nodes corresponding (o these disallowed factors
were pushed (collapred) into their fanins.

N Fuip | #oul | #stales [Fedgee T Flai
ex] 2 2 i 24 3
exJ e] 13 B4 Kl
hhara q 2 ' 45 3
Dhsse 1] 1 i3} El
D ¥ [0 10 ;
3 2z 1 k2] 96 5
aniel 1 19 ED 11 LB
scl T/] 97 TON I
1<T Ny] [£3) DNl N
Is7 9 T 130 [CLE B

Table §: Statistics of Benchimark Examples

) STANDARD COVEHR-XN COVER.B
it | Teor [pg | T | feov tpg § NIt {icov [Tpg
Line tinwe fime
ex] H1ITY9] 24s S0 J00] 20< 1 1001 2.0«
exy 57 | 9%.1 /s [6T [T Jie TOU [I0<

bara | 6%] T00 [T.8m] 85 [JOU | T5m | 65 | 100 | T&m
ese [T 1 TO0 1 3 Im [T3 [TW [26m | T ~TTm
s T TO0R TSI [16T 1 T00 [3.6m | 157 1 100 | T%m
ile T 1O 8 50m 20T} T JIm {19371 TOOU 1 3.0
Plan 1 537 [T00 1 23m 502 | T00 [ZIw [587 [T00 | 2Ty

scl 799] TO0 ! ®2in [93 | 100 ddm | 194 i
<1 JITTI58 | 2o | 351 T [4 I TIm
sz 052 1919 D s [TOU [19 [56 KR4I

(b} An wnconstrained multi-level logic optinization was carried
out. Note that in this case. we cannol guarantee J00 te<ta-
biliry.

5. Sequential test generation can be performed more efficiently in this
case (han via STALLION., since we already know all the uucor-
rupted diffcrentiating sequences for cach possible fanlty ffault-liee
state pair. Hence, the propagation step in STALLION i< avoided.

In Table). we give the statictice of the henchmark examplec fron
the MONC Logic Synthesis Workshop and incustrial sonrcec. Fhe 1o
sults oblained au these examples via ronning the standard cxnthesis
procedure aud the two options in the new procedure ate summarized 1
Table 2 under the columns STANDARD. COVER-A and COVER.B.
The number of literals in the combinational logic (lit). fauli coverage
oblained {fcov) and the CPU time for tesl generation (tpg time) are
indicated in the thiree cases. fsl and £32 are particularly vicious exan-
ples. They each have a large number of states and a single output. All
the CPU times are on a VAX 11/8R00.

COVER-A results in 1007 testable designs with simall area overheads,
that require less CPU time for test generation than the STANDARD
procedure. \We cannot guarantee full testability via COVER-B. bu it
allows for the use of more powerful Boolean operations and hence the
area overhead is smatler than via COVER-A. Highly (> 097) testable
realizations are obtained in all cases via COVER-B.

We next compare thie approach with previously proposed svniliecic
approaches o achieve full testability. The comparisons are presented in
Table 3. Under the column COVER. we give the rerult correspoucling 1o
COVER-B. if the rerulting design was fully tertable. Else. we give {he
result of COVER-A. The coluinn CONSTRAIN lhas the results obiained
by using the constrained siate assignment and logic optimization pro-
cedure of [7]. The column OPTSYN has the results using the optunal
synthesis procedure of (8). Tle nuniber of literals in the combinational
logic (lit). the CPU time for synthesis (syn. time) and the CPU time
required for tes! generation (Lpg time) are indicated. All the designs
via each of the procedures are 1004 testable.

From the standpoint of CPU urage for minimization and test pat-
tern generation the CONSTRAIN procedure used the least time. but
required modil'_v'i:g the original design. Unfortunately. circuit modifi-
cations which modify interface descriptions. such as adding inpuis or
outp:ts, can be expensive (or impossible!) in typical design environ-
ments.

The COVER procedure completed all examples with modest 10 rea-
sonsble CPU requiremments. The OPTSYN procedure required the
grealest amounts of CPU and was prohibitively expensive on one exam-
ple.

In terme of qualily of result. OPTSYN uniformly produced the simall-
esl designs. COVER s resulis averaged were within 5% over all and were

. COVER CONSTRATIN OPTSY N
nt XN pg It syh. Tpg Til N tpg
time | time tive | time time [time
ex1 IXT S5Ic] 20] 0] 31s] LIs] 43 TIe | 2.0s
ex’ (Y Jas 0s [J0s 0s | o4 | I.Iwm { 418s
Dbara | 08 2Ts | 1.6m RE] s IIs T 68 2Is | T.Bm
Bhsse | T [T.3m | Jom | 143 [.din Iis | 124 1.3 | 3.2
s IS4] L | 4.0m Py T 12m) 5h« T TdT 2.9m | 5. Tm
“dhle 1941 1.dm [3.9m [2347 | 1.3m 45s [165 1 8.2m | 5.5m
plan 532 [26m | LIm [568 { 2om T 53<T3537 1 20m | 2.3m
scl 94 | 4.Tm 3m LREERI 8Ts | V94 4.Tm | &I
fs] 451 [3.7m | Llm [5447 J 2.8m [39s [423 1.3 | 26m
1s2 58 [5.0m [19m | 6677 | 3.9 5]s > W7 B

! Involves the addition of an extra input and output.
2 The synthesis procedure was terminated after 2 hours.

the precisely the same as OPTSYN/s on four examples. COVER's re-
sults on area were uniformly superior to the CONSTRAIN procedure
resulting in an average 137 improrement.

Overall. these results indicate that the COVER procedure improves
over the previous procedures from the standpoint of quality of result
versus CPLU time requirements. Most importantly the COVER proce-
dure is able to handle designs that the previous procedures could not
(without modification).

These results show that a synthesis user seeking complete testability
presently has a spectrum of methods at his disposal. and may choose his
approach based on the peculiarities of the example 1o be synthesized and
the relative importance of synthesis CPU time. TPG tine. final circuit
size and the ditfficulty of incorporating circun modifications into the
complete circuit desigt

7 Conclusions

A variety of techniques have been proposed (o address the problem
of synthesizing fully testable sequential machines, At one end of the
spectrum there are optimal synthesis procecdures that ensure full testa-
Lility by eliminating redundancies via .Le use of appropriate don’t care
sels. At the other end of the spectrum there are constrained syntle-
sis proceditres that produce fully and easily testable sequential circuite
by rectricting the implementation of the logic. In this paper we at-
e anted 10 unify and extend these methods. We first identified classes
o dundancies and isofated eqarralcut-state redundancees as those most
dit ult 10 eliminate. We then showed that the essential problem be-
I: . eguivalent-state redundancies i the creation of valid/imvalid state
pair«. We devoted the remainder of the paper to techniques for de-
veloping diffcrentiating scquenees for valid/invalid state pairs created
by a fault. as wel} as 1o techniques for retaining these sequences in
the presence that fault. We showed how both optunal and constrained
syvnthesis procedures ensure differentiating sequences and also used e
notion of fault-cflect disjontness to demonstrate a spectrum of methods
that place relatively more-or-less emphasis on either logic optimization
or constrained synthesis. Technigues used in thic exploration included
fauli simulation. Boolean covering. algebraic factorization and state as-
sighthent.

\We then compared the final results of each of these methods on & num-
ber of standard benchmark examples and showed that each approach
has its merits depending on the relative importance of synthesis CPl
time. TPG time. final circuit size and the difficulty of incorporating
circuit modifications into the complete circuit desigh.

8 Acknowledgements

Thanks to Robert Brayton. Tim Cheng. Tony Ma. Richard Newtou.
Alex Saldanha and Alberto Saugiovanni-Vincentelli for interesting dis-
cussions on sequential circuit optinmization and testability. This work
was supported in part by the Defense Advanced Research Projects
Agency under contract NOOG14-87-K-0825.

References

{1} K. Bartlett. R. K. Brayton. G. D. Hachtel. R. M. Jacoby. C. R.
Morrison. R. L. Rudell. A. Sangiovanni-Viucentelli, and A. R.
Wang. Multi-level Logic Minimization Using lmplicit Don’t Cares.
5n IEEE Transactions on Compuler-Aided Design, pages 723-740,

une 1988,

[2) D. Brand. Redundancy amd don’t cares in logic sxnthesis. In [LLE
Tmusactions on Computers. volume C.32. pages 947-952. Octobes
1983

[3] R. Brayton. Factoring logic fuuctions. ln IBMJRD. pages IK7-19x.
March 1987,

{4] R. Brayton. R. Rudell. A. Sangiorauni-Vincentelli. and A. Wang
MIS: A Multiple-Level Logic Optimization Sxstem. In JEEL Trane.
achrons on Computcr-drded Design. pages 1062-1081. Novenbe:
1987,

K-T. Cheng and V. D. Agranal. An Econonucal Scan Design {oi
Sequential Logic Test Geuneration. In Proc. of 19th Favlt Telcriut
Computing Symposrum. June 1989. 10 appear.

[6) S. Devadas. H-K. T. Ma. A. R. Newlon. and A. Sangioraun-
Vincentelli. Optimal Logic Synthesis aid Testability: Two Facee
of the Same Coin. In Proc. of Intcrnational Test Canferened, pages
3-13. September 1988,

[7} S. Devadas. H-K. T. Ma. A. R. Newton. and A. Sangiovanni-
Vincentelli. A Synthesis and Optimization Procedure for Fullh
and Easily Testable Sequential Machines. In JILLE Transactions
on Computer-Aided Design, October 1989. to appear.

S. Devadas. H-K. T. Ma. A. R. Newton. and A. Sangiovanui-
Vincentelli. lrredundant Sequential Machines Via Optimal Logir
Synthesis. In Proc. of 23rd Hawan Confercncc on System Seicncis
and to appear in JELE Transactions on Computar-4ided Design.
January 1990.

5

(8

[9

G. D. Hachtel. R. M. Jacoby. k. Keutzer. and C. R. Alorricon
On the Relationship Between Area Optimization and Malnfauh
Testabilty of Multilexel Logic. In Pracoodings of the Internation.:!
Workshop on Logie Synthesis. June 1980,

E. J. MeCluskey. Minimization of Boolean Functions, In !/
Lab. Teehnical Jaurnal, volume 35, pages 1417-1411. Bell Lal.
November 1956,

[10)

(1)

A. Miczo. Digital Logic Testing and Simulation. Harper and Row.
New York. 198¢.

